Valerie Dibley

During 2009, groundwater investigations and remediation under CERCLA continued at both the Livermore site and Site 300. Lawrence Livermore National Laboratory samples and analyzes groundwater from areas of known or suspected contamination. Portions of the two sites where soil or groundwater contains or may contain chemicals of concern are actively investigated to define the hydrogeology and nature and extent of the contamination and its source. Where necessary, remediation strategies are developed and evaluated in preparation for a CERCLA removal action or through the feasibility study process. An approved remedy for each area is developed in consultation with the regulatory agencies and the community.

This chapter reviews the distribution of contaminants in groundwater and the progress LLNL has made in removing contaminants from groundwater and from the unsaturated zone (soil vapor) at the Livermore site and Site 300. The sites are similar in that the contamination is, for the most part, confined on site. The sites differ in that Site 300, with an area of 28.3 km^2 (10.9 mi^2), is much larger than the Livermore site and has been divided into nine operable units (OUs) based on the nature and extent of contamination, and topographic and hydrologic considerations. The Livermore site at 3.3 km^2 (1.3 mi^2) is effectively one OU.

8.1 Livermore Site Ground Water Project

Initial releases of hazardous materials occurred at the Livermore site in the mid-to-late 1940s during operations at the Livermore Naval Air Station (Thorpe et al. 1990). There is also evidence that localized spills, leaking tanks and impoundments, and landfills contributed VOCs, fuel hydrocarbons, metals, and tritium to the unsaturated zone and groundwater in the post-Navy era. The Livermore site was placed on the U.S. Environmental Protection Agency National Priorities List in 1987.

An analysis of all environmental media showed that groundwater and both saturated and unsaturated soils are the only media that require remediation (Thorpe et al. 1990). Compounds that currently exist in groundwater at various locations beneath the site at concentrations above drinking water standards (MCLs) are TCE, PCE, 1,1-dichloroethylene, chloroform, 1,2-dichloroethylene, 1,1-dichloroethane, 1,2-dichloroethane, trichlorotrifluoroethane (Freon-113), trichlorofluoromethane (Freon-11), and carbon tetrachloride. PCE is also present at low concentrations slightly above the MCL in off-site plumes that extend from the southwestern corner of the Livermore site. LLNL operates groundwater extraction wells in both on-site and off-site areas. In addition, LLNL maintains an extensive network of groundwater monitoring wells in the off-site area west of Vasco Road.

8.1.1 Physiographic Setting

The general topography of the Livermore site is described in **Chapter 1**. The Livermore Valley groundwater system consists of several semiconfined aquifers. Rainfall from the surrounding hills and seasonal surface water in the arroyos recharge the groundwater system, which flows toward the east-west axis of the valley.

The thickest sediments and aquifers are present in the central and western portions of the Livermore Valley, where they form an important resource for the Zone 7 Water Agency. These sediments comprise two aquifers: the Livermore Formation and overlying alluvium. The Livermore Formation averages about 1000 m in thickness and occupies an area of approximately 250 km². The alluvium, which is about 100 m thick, is the principal water-producing aquifer within the valley.

8.1.2 Hydrogeology of the Livermore Site

Sediments at the Livermore site are grouped into four grain-size categories: clay, silt, sand, and gravel. Groundwater flow beneath the site occurs primarily in alluvial sand and gravel deposits, which are bounded by lower permeability clay and silt deposits. The alluvial sediments have been subdivided into nine HSUs beneath the Livermore site. HSUs are defined as sedimentary sequences whose permeable layers show evidence of being hydraulically interconnected. Six of the nine HSUs contain contaminants at concentrations above their MCLs: HSU-1B, -2, -3A, -3B, -4, and -5 (Blake et al. 1995; Hoffman et al. 2003). HSU-1A, -6, and -7 do not contain contaminants of concern above action levels.

8.1.3 Remediation Activities and Monitoring Results

In 2009, LLNL maintained 29 groundwater treatment facilities. The groundwater extraction wells and dual (groundwater and soil vapor) extraction wells produced more than 832 million L of groundwater and the treatment facilities removed nearly 46.3 kg of VOCs. Since remediation began in 1989, approximately 14.3 billion L of groundwater have been treated, resulting in removal of more than 1399 kg of VOCs. Detailed flow and mass removal by treatment facility area is presented in <u>Buscheck et al. (2010)</u>.

LLNL also maintained 9 soil vapor treatment facilities in 2009. The soil vapor extraction wells and dual extraction wells produced more than 999,000 m³ of soil vapor and the treatment facilities removed more than 39.4 kg of VOCs. Since initial operation, over 10 million m³ of soil vapor has been extracted and treated, removing more than 1393 kg of VOCs from the subsurface. Detailed flow and mass removal by treatment facility area is presented in <u>Buscheck et al. (2010)</u>.

During 2009, the Remedial Project Managers signed a Consensus Statement for Environmental Restoration of the Livermore Site that included 32 new Federal Facility Agreement milestones. The majority of these milestones included the restoration of treatment facility operations that were shut down or required repair due to the fiscal year 2008 budget shortfall. Enhanced Source Area Remediation (ESAR) related work was mostly limited to minor modifications to the facilities that will be part of the ESAR activities to accommodate field treatability tests. These

modifications included instrumentation of treatability test wells with level transducers to observe the influence of nearby pumping at the Treatment Facility (TF) D Helipad and limited testing of a pump that can withstand high temperatures at the Vapor Treatment Facility (VTF) E Eastern Landing Mat ESAR site. In addition, two new extraction wells were drilled and constructed in the TFB area located near the western border of the Livermore site where concentrations remain above the maximum contaminant level (5 micrograms per liter) for trichloroethene (TCE). See Buscheck et al. (2010) for the current status of cleanup progress.

Groundwater concentration and hydraulic data indicate very little change in the VOC concentrations and areal extent of the contaminant plumes in 2009. This lack of significant change is primarily attributable to active remediation at several groundwater treatment facilities that operated during the entire calendar year, and also to remediation that was restarted at many facilities prior to September 2009. There is little to no evidence of measureable contaminant plume migration while many treatment facilities were not operating during late 2008 and early 2009. Hydraulic containment along most portions of the western and southern boundaries of the site was fully re-established and limited progress was made toward interior plume and source area clean up.

8.1.4 Environmental Impacts

LLNL strives to reduce risks arising from chemicals released to the environment, to conduct all its restoration activities to protect environmental resources, and to preserve the health and safety of all site workers. LLNL's environmental restoration project is committed to preventing present and future human exposure to contaminated soil and groundwater, preventing further contaminant migration of concentrations above drinking water standards, reducing concentrations of contaminants in groundwater, and minimizing contaminant migration from the unsaturated zone to the underlying groundwater.

Remedial solutions that have been determined to be most appropriate for individual areas of contamination are implemented. The selected remedial solutions, which include groundwater and soil vapor extraction and treatment, have been agreed upon by DOE and the regulatory agencies with public input and are designed to achieve the goals of reducing risks to human health and the environment and satisfying remediation objectives, regulatory standards for chemicals in water and soil, and other state and federal requirements.

8.2 Site 300 CERCLA Project

A number of contaminants were released to the environment during past LLNL Site 300 operations including waste fluid disposal to dry wells, surface spills, piping leaks, burial of debris in unlined pits and landfills, detonations at firing tables, and discharge of rinse water to unlined lagoons. Environmental investigations at Site 300 began in 1981. As a result of these investigations, VOCs, high explosive compounds, tritium, depleted uranium, organosilicate oil, nitrate, perchlorate, polychlorinated biphenyls, dioxins, furans, and metals were identified as contaminants of concern in soil, rock, groundwater, or surface water. This contamination is confined within the site boundaries with the exception of VOCs that are present in off-site

monitor wells near the southern site boundary. LLNL maintains an extensive network of on-site and off-site wells to monitor this contamination. All characterized contaminant release sites that have a CERCLA pathway have been assigned to one of nine OUs based on the nature, extent, and sources of contamination, and topographic and hydrologic considerations. Site 300 was placed on the U.S. Environmental Protection Agency National Priorities List in 1990. Cleanup activities began at Site 300 in 1982 and are ongoing.

Background information for LLNL environmental characterization and restoration activities at Site 300 can be found in Webster-Scholten (1994) and the *Site-Wide Remediation Evaluation Summary Report for Lawrence Livermore National Laboratory Site 300* (Ferry et al. 2006).

8.2.1 Physiographic Setting and Geology of Site 300

Site 300 is located in the southeastern Altamont Hills of the Diablo range. The topography of Site 300 consists of a series of steep hills and canyons generally oriented northwest to southeast. The site is underlain by gently dipping sedimentary bedrock dissected by steep ravines. The bedrock consists of interbedded conglomerates, sandstones, siltstones, and claystones of the late Miocene Neroly Formation (Tn), and a Pliocene nonmarine unit (Tps). The bedrock units are locally overlain by mid- to late-Pleistocene terrace deposits and late-Pleistocene to Holocene floodplain, ravine fill, landslide, and colluvial deposits.

The bedrock within Site 300 has been slightly deformed into several gentle, low-amplitude folds. The locations and characteristics of these folds, in combination with the regional fault and fracture patterns, locally influence groundwater flow within the site.

8.2.2 Contaminant Hydrogeology of Site 300

Site 300 is a large and hydrogeologically diverse site. Due to the steep topography and structural complexity, stratigraphic units and groundwater contained within many of these units are discontinuous across the site. Consequently, site-specific hydrogeologic conditions govern the occurrence and flow of groundwater and the fate and transport of contaminants beneath each OU.

An HSU is a water-bearing zone that exhibits similar hydraulic and geochemical properties. At Site 300, HSUs have been defined consisting of one or more stratigraphic intervals that compose a single hydraulic system within one or more OU. Groundwater movement and contaminant migration in groundwater are discussed in the context of HSUs.

Groundwater contamination at Site 300 occurs in three types of water-bearing zones:

- 1. Quaternary deposits including the alluvium and weathered bedrock (Qal/WBR HSU), alluvial terrace deposits (Qt), and landslide deposits (Qls HSU).
- 2. Tertiary perched groundwater in fluvial sands and gravels (Tpsg HSU) and semilithified silts and clay of the Tps HSU.
- 3. Tertiary Neroly Formation bedrock including the Tnsc₂, Tnbs₂, Tnsc_{1b} Tnbs₁, Tnbs₀, and Tnsc₀ HSUs.

Groundwater in bedrock is typically present under confined conditions in the southern half of the site but is often unconfined elsewhere. Recharge occurs where saturated alluvial valley fill is in contact with underlying permeable bedrock, and where bedrock strata crop out.

8.2.3 Remediation Activities and Monitoring Results

Cleanup activities were initiated at Site 300 in 1982 and are underway or are in the process of being implemented at all nine OUs. These activities include:

- Operating up to 20 groundwater and soil vapor extraction and treatment facilities.
- Capping and closing four landfills, six high explosives rinse water lagoons and one high explosives burn pit.
- Removal and/or closure of numerous dry wells throughout the site.
- Removal of contaminated soil from source areas throughout the site.
- Installation and sampling of over 680 groundwater monitor wells to track plume migration and remediation progress.

These remediation efforts have resulted in (1) the elimination of risk to on-site workers from contaminant exposure at eight locations throughout Site 300, (2) a reduction in maximum concentrations of the primary contaminant (VOCs) in Site 300 groundwater by 50% to 99%, and (3) the remediation of VOCs in the eastern General Services Area to meet cleanup standards.

In 2009, the Site 300 ERP operated 13 groundwater and 5 soil vapor treatment facilities. About 33 million L of groundwater were extracted and treated during 2009. The dual and soil vapor extraction wells together removed 2.6 million m³ of contaminated soil vapor. The Site 300 treatment facilities removed nearly16 kg of VOCs, 0.12 kg of perchlorate, 1500kg of nitrate, 0.14 kg of the high explosive compound RDX and 0.0031 kg of silicone oils (TBOS/TKEBS) in 2009. Since groundwater remediation began in 1990, approximately 1423 million L of groundwater has been treated, resulting in removal of more than 540 kg of VOCs, 0.91 kg of perchlorate, 8100 kg of nitrate, 1.3 kg of RDX, and 9.5 kg of silicone oils. Detailed flow and mass removal by OU is presented in Dibley et al. (2010).

Cleanup remedies have been fully implemented and are operational in seven of the nine OUs at Site 300 to date (Operable Unit 8 and General Services Area, Building 834, Pit 6 Landfill, High Explosives Process Area, Building 854, and Building 832 Canyon OUs). The Building 850/Pit 7 Complex OU will be fully implemented in 2010. The CERCLA pathway for the last OU, Building 812, is being negotiated with the regulatory agencies.

Cleanup of polychlorinated biphenyl (PCB), dioxin, and furan-contaminated soil surrounding Building 850 was completed in 2009. Prior to PCBs becoming regulated substances, capacitors were destroyed on the Building 850 Firing Table during experiments. Dioxins and furans were created by the combustion of the PCBs during these experiments. Cleanup was necessary to mitigate cancer risk to on-site workers resulting from the potential inhalation or ingestion of resuspended particulates and direct dermal exposure to contaminated surface soil, as well as to mitigate potential hazard to burrowing owls. Approximately 22,172 m³ of PCB-contaminated soil

were excavated from the hillsides, solidified using portland cement, and placed in the former Corporation yard of Building 850.

Groundwater concentration and hydraulic data collected and analyzed for Site 300 during 2009 provided evidence of continued progress in reducing contaminant concentrations in Site 300 soil vapor and groundwater, controlling and cleaning up contaminant sources, and mitigating risk to on-site workers. A more detailed description of remediation progress at the Site 300 OUs in 2009 is available in the 2009 Annual Compliance Monitoring Report for LLNL Site 300 (Dibley et al. 2010).

8.2.4 Environmental Impacts

LLNL strives to reduce elevated risks arising from chemicals released to the environment at Site 300, to conduct its activities to protect ecological resources, and to protect the health and safety of site workers. LLNL's cleanup remedies at Site 300 are designed and implemented to achieve the goals of reducing risks to human health and the environment and satisfying remediation action objectives, meeting cleanup standards for chemicals in water and soil, and preventing contaminant migration in groundwater to the extent technically and economically feasible. These remedies are selected by DOE and the regulatory agencies with public input. These actions include groundwater and soil vapor extraction and treatment; source control through the capping of lagoons and landfills, removal of contaminated soil, and hydraulic drainage diversion; and monitored natural attenuation, monitoring, and institutional controls.